String Phenomenology: Type II/F-Theory Perspective

Focus on particle physics & D-branes:

- I. Type II (w/ D-branes at small string coupling)
 - → Standard Model & GUT's

Recent developments: Non-perturbative effects (D-instantons)

- → new hierarchy for couplings
- II. F-theory (string theory w/ D-branes at finite coupling)
 - → primarily (local) SU(5) GUT's
 - → instantons time permitting
- III. Conclusions/outlook

I. Particle Physics implications (Type II):

Recent focus: landscape of realistic D-brane quivers w/ D-instantons

MSSM's w/ realistic fermion textures

M.C., J. Halverson, R. Richter, & P. Langacker '09-'10

General MSSM quivers & Additional Matter

(to make it compatible w/ global constraints) → stringy inputs on exotic matter

M.C., J. Halverson, P. Langaceker, 1108... appears tonight on hep-ph → c.f., also J. Halverson's talk in the morning parallel session

II. D-instantons: recent focus on Type IIB & F-theory

F-theory aspects (multi-prong approach): zero modes& superpotential

M.C., I. Garcia-Etxebarria, J. Halverson 1107.2388 (also, 1003. 5337, 1008.5386 &M.C., I. Garcia-Etxebarria, R. Richter 0911.0012)

Perturbative String Theories → (finite) theory of quantum gravity

Green&Schwarz'84

Phenomenologically promising

Recent (MSSM): Bouchard, M.C., Donagi'05 ...

Anderson, Gray, Lukas`09... L. Anderson's talk in parallel session

Lebedev, Nilles, Raby, Ramos, Ratz Vaudrevange, Wingerter '07-'09

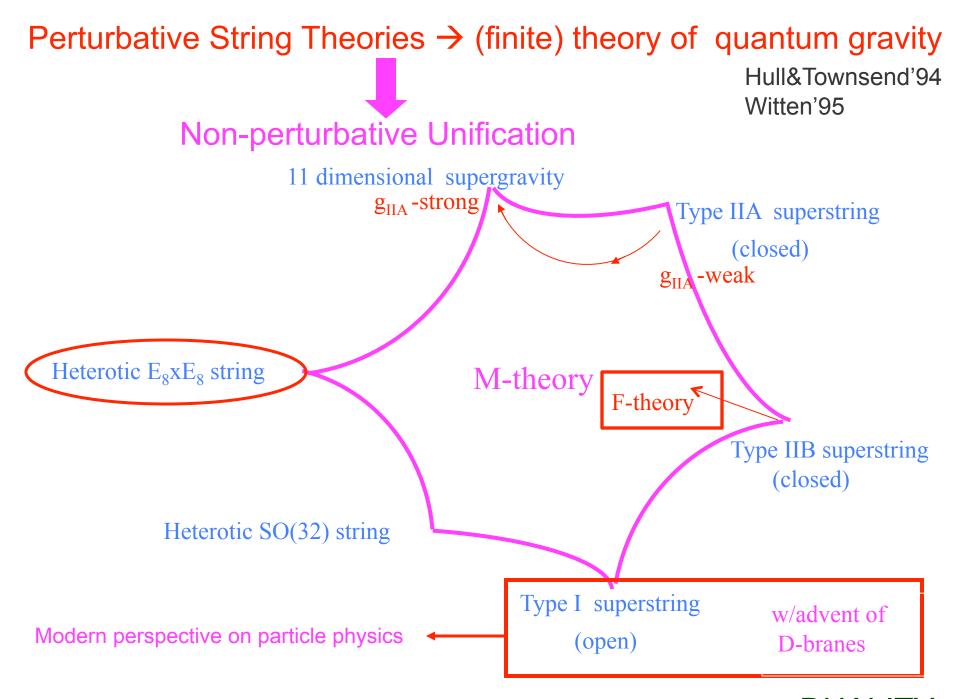
Heterotic E₈xE₈ string

Type IIA superstring (closed)

Type IIB superstring (closed)

Heterotic SO(32) string

Type I superstring (open)



Different String Theories related to each other by Weak-Strong Coupling DUALITY

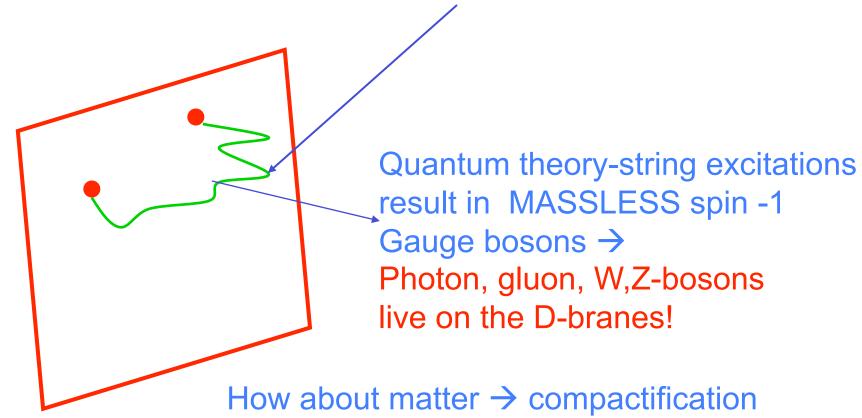
D-branes & Particle Physics →

Beautiful relation to particles & forces of nature - geometric

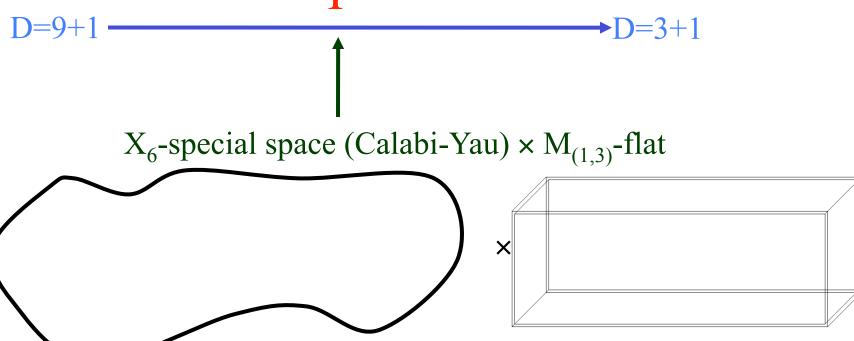
Open strings w/ charges at the ends

Ends ``attached " to boundary Dp - branes Polchinski'95

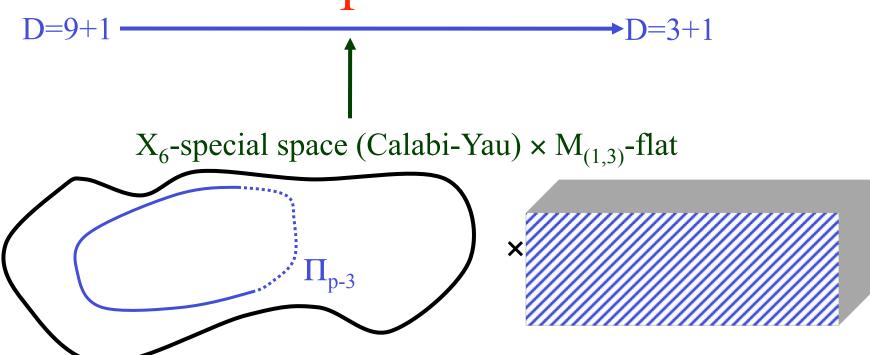
Extends in p+1 dim. world-volume



Compactification

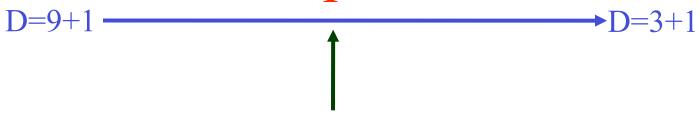


Compactification

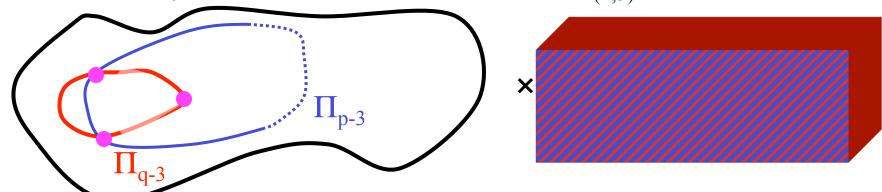


D p-branes – extend in p+1 dimensions: 3+1-our world $M_{(3,1)}$;(p-3)-wrap $\Pi_{\text{p-3}}$ cycles of X_6

Compactification



 X_6 -special space (Calabi-Yau) × $M_{(1,3)}$ -flat



D p-branes – extend in p+1 dimensions: 3+1-our world $M_{(3,1)}$; (p-3)-wrap Π_{p-3} cycles of X_6

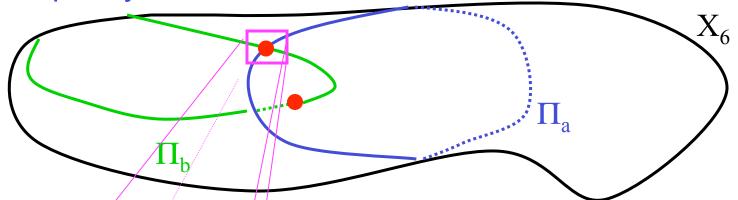
D q-branes – extend in q+1 dimensions: 3+1-our world $M_{(3,1)}$; (q-3)-wrap Π_{q-3} cycles of X_6

 $\Pi_{q-3} \cap \Pi_{p-3}$ $\Pi_{q-3} \subset \Pi_{p-3}$ Rich
structure

D-branes at singularities & Wilson lines: Aldazabal et al. 98....
M.C., Wang&Plümacher'00; M.C., Wang&Uranga'01...

Intersecting D6-branes

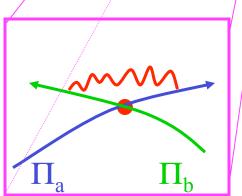
wrap 3-cycles Π



In internal space intersect at points:

Number of intersections $[\Pi_a] \circ [\Pi_b]$ - topological number

Geometric origin of family replications!



Berkooz, Douglas & Leigh '96

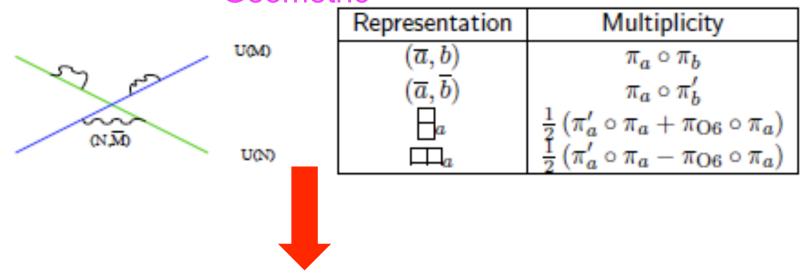
At each intersection-massless string excitationspin $\frac{1}{2}$ field ψ - matter candidate Geometric origin of matter!

Type II w/ D-branes →

fertile ground for particle physics model building

[Pedagogical review: TASI'10 lectures, M.C., Halverson arXiv:1101.2907]

Type IIA w/intersecting D-branes → key features of SM & SU(5) GUT spectrum: non-Abelian gauge symmetry, chirality & family replication Geometric



Large classes (order of 100's) of supersymmetric, globally consistent (Gauss's law for D-brane charge) SM-like & GUT constructions; also coupling calculations

[M.C.,Shiu, Uranga'01]...

[M.C. Papadimitriou '03], [Cremades, Ibáñez, Marchesano'03]...

Recent developments:

New types of D-instantons: introduced to generate certain perturbatively absent couplings for charged sector matter

```
[Blumenhagen, M.C., Weigand, hep-th/0609191]
[Ibañez, Uranga, hep-th/0609213]
```

- charged matter coupling corrections

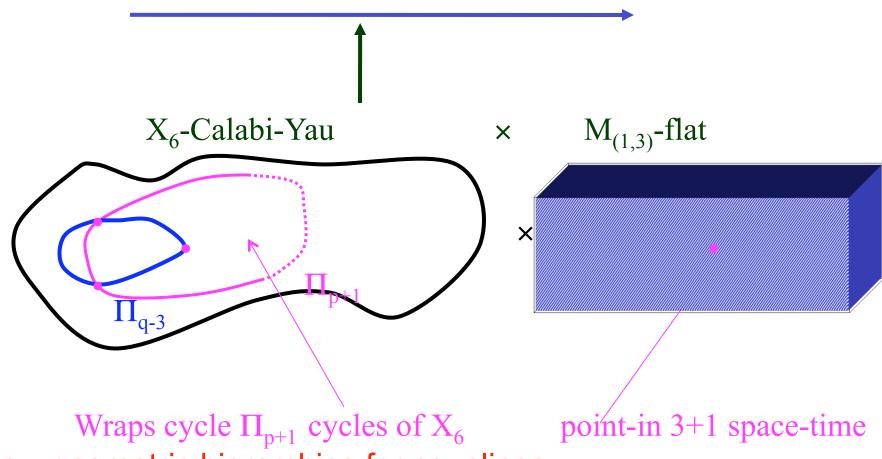
[Florea, Kachru, McGreevy, Saulina, 0610003]

- supersymmetry breaking

Review: [Blumenhagen, M.C., Kachru, Weigand, 0902.3251]

Encoded in non-perturbative violation of ``anomalous' U(1)'s

D-Instanton - Euclidean D-brane backgound



Instanton can intersect with physical Dq-brane

→ charged zero modes generate non-perturbative couplings

Rigid O(1) instantons -> direct contribution to superpotential

- I. Wrap rigid cycles homologically the same as orientifold cycles-Neutral zero modes $\bar{\tau}^{\dot{\alpha}}$ projected out [Argurio et al.0704.0262]
 - \longrightarrow 4 bosonic modes x_E^μ & only 2 fermionic modes θ_α

yield directly superpotential measure: $\int d^4x_E\,d^2\theta$

$$W \sim e^{-S_{E2}^{cl}} \prod_{i} \Phi_{i},$$

- II. Charged Zero modes from strings between E2 and $D6_a$:
- \longrightarrow Localized at each intersection of E2 and $D6_a$:

One fermionic zero mode λ_a per intersection

Stringy & Geometric!

		D_p		
ΩR	θ	λ λ	2	Ξ

Zero modes	Reps	Number					
$\lambda_{a,I}$	$(-1_E, \square_a)$	$I=1,\ldots,[\Xi\cap\Pi_a]^+$					
$\overline{\lambda}_{a,I}$	$(1_E, \overline{\square}_a)$	$I=1,\ldots,[\Xi\cap\Pi_a]^-$					
$\lambda_{a',I}$	$(-1_E, \overline{\square}_a)$	$I=1,\ldots,[\Xi\cap\Pi'_a]^+$					
$\overline{\lambda}_{a',I}$	$(1_E, \square_a)$	$I=1,\ldots,[\Xi\cap\Pi'_a]^-$					

III. Develop conformal field theory instanton calculus

[Blumenhagen, M. C., Weigand, hep-th/0609191, ...]

Building blocks: disc-level couplings of two λ modes to matter Φ_{ab} : $S = \int_{\Xi} \lambda_a \, \Phi_{ab} \overline{\lambda}_b$

Specific Examples:

```
i Majorana neutrino masses original papers,...
```

```
ii Nonpert. Dirac neutrino masses [M.C., Langacker, 0803.2876]
```

iii 10 10 5 GUT couplings

```
[Blumenhagen, M.C., Lüst, Richter, Weigand, 0707.1871] one-instanton effect \longrightarrow g_s \to 1 (M-theory on G_2)
```

iv Polonyi-type couplings →

[Aharony, Kachru, Silverstein 0708.0493] [MC, Weigand 0711.0209, 0807.3953] [Heckman, Marsano, Saulina, Schafer-Nameki, Vafa 0808.1286]

Examples of such instanton induced hierarchical couplings primarily for local Type IIA toroidal orbifolds SU(5) GUT's

Challenge: global models → Type I/IIB/F-theory (algebr. geom.)

i. Type I GUT's on compact elliptically fibered Calabi-Yau First global chiral (four-family) SU(5) GUT's w/ D-instanton generated Polonyi & Majorana neutrino masses

[M.C., T. Weigand, 0711.0209,0807.3953]

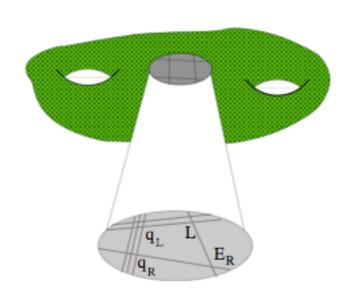
- ii. Global Type IIB GUT's: 1010 5_H non-perturbative coupling (two family) SU(5) GUT on CY as hypersurface in toric variety [Blumenhagen,Grimm,Jurke,Weigand, 0811.2938]
- iii. Global F-theory lift [M.C., I. Garcia-Etxebarria, J. Halverson,003.5337] [Develop a code to calculate zero modes/spectrum in Type IIB and F-theory on toric varieties; code w/ new efficient technique →

[Blumenhagen, Jurke, Rahn & Roschy, 1003.5217]]

Most examples w/ O (1) instantons addressed SU(5) GUT's How about Standard Model?

Adressed for local Madrid quiver [Ibanez, Richter, 0811.1583]

Systematic Analysis of D-Instanton effects for MSSM's quivers (compatible with global constraints)



Landscape analysis of MSSM w/ realistic fermion textures

[M.C., J. Halverson, R. Richter, 0905.3379; 0909.4292; 0910.2239]

Stringy Weinberg operator neutrino masses (examples of low string scale)

[M.C., J. Halverson, P. Langacker, R. Richter, 1001.3148] Singlet-extended MSSM landscape

[M.C. J. Halverson, P. Langacker, 1006.3341]

 \rightarrow c.f. J. Halverson's talk in the parallel session

Bottom-up approach initiated [Aldazabal,Ibanez,Quevedo,Uranga'00]...

Related recent works: Specific 3-stack [Leontaris, 0903.3691]

Madrid quiver [Anastasopoulos, Kiritsis, Lionetto, 0905.3044]

SU(5) GUT's [Kiritsis, Lennek, Schellekens, 0909.0271]...

MSSM at toric singularities: [Krippendorf, Dolan, Maharana, Quevedo, 1002.1790, 1106.6039]

Approach: Bottom-up quivers

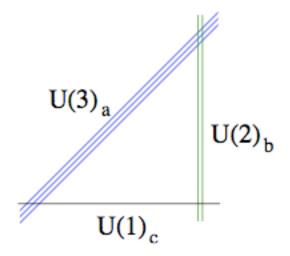
Since spectrum and couplings geometric
efficient classification of key physics
[compatible w/ global constraints, but without delving into specifics of globally defined string compactifications]
[global conditions←→Gauss's law for D-brane charge←→stringy]

Quiver data: massless spectrum & examination of couplings [both perturbative & non-perturbative w/O(1)-inst.]

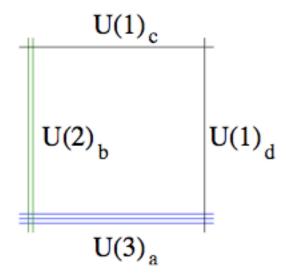
Probe ``quiver landscape''
to identify realistic quivers in the landscape of string vacua

Multi-stack MSSM quivers

Employ three-stack MSSM $U(3)_a \times U(2)_b \times U(1)_c$



& four-stack MSSM $U(3)_a \times U(2)_b \times U(1)_c \times U(1)_d$



five-stack....

Four-stack set of MSSM models w/ 3 N_R & potentially viable fermion textures

[M.C., J. Halverson, R. Richter, 0905.3379]

Solution #	q_L d_R		u_R L					E_R				N_R		H_u				H_d				
Solution #	(a, b)	(a, \bar{b})	(\overline{a}, c)	$(\overline{a}, \overline{d})$	Γ	$(\overline{a}, \overline{c})$	(\overline{a}, d)	(b, \overline{c})	(b,d)	(\bar{b}, d)	(c, \overline{d})	止	$\overline{\square}_d$	76	Пь	(c,d)	$(\overline{c}, \overline{d})$	(b, c)	(\bar{b}, c)	(b, \overline{d})	(\bar{b}, \bar{d})	$(\overline{b}, \overline{c})$
1	3	0	3	0	0	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
2	3	0	2	0	1	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
3	3	0	1	0	2	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
4	3	0	0	0	3	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
5	3	0	0	0	3	0	3	0	0	3	0	0	3	3	0	0	0	1	0	0	0	1
6	3	0	3	0	0	2	1	0	0	3	0	2	1	2	0	1	0	0	0	0	1	1
7	3	0	3	0	0	3	0	0	0	3	2	1	0	2	0	0	1	0	1	0	0	1
8	3	0	3	0	0	3	0	0	0	3	0	2	1	2	0	0	1	0	1	0	0	1
9	3	0	3	0	0	3	0	0	0	3	1	2	0	2	0	1	0	0	1	0	0	1
10	2	1	3	0	0	1	2	0	0	3	0	0	3	0	0	0	3	1	0	0	0	1
11	2	1	3	0	0	1	2	0	0	3	3	0	0	0	0	3	0	1	0	0	0	1
12	2	1	3	0	0	3	0	0	0	3	3	0	0	0	0	0	3	1	0	0	0	1
13	2	1	3	0	0	3	0	0	1	2	3	0	0	0	0	0	3	0	1	0	0	1
14	1	2	3	0	0	3	0	0	3	0	3	0	0	0	0	0	3	1	0	0	0	1
15	0	3	0	3	0	0	3	3	0	0	0	1	2	0	3	0	0	0	0	1	0	1
16	0	3	0	0	3	0	3	0	3	0	0	0	3	0	3	0	0	1	0	0	0	1
17	0	3	0	0	3	0	3	1	2	0	1	0	2	0	3	0	0	0	0	1	0	1
18	0	3	0	0	3	0	3	3	0	0	2	0	1	0	3	0	0	0	0	1	0	1
19	0	3	0	0	3	0	3	3	0	0	0	1	2	0	3	0	0	0	0	1	0	1
20	0	3	0	0	3	1	2	1	2	0	2	0	1	0	3	0	0	1	0	0	0	1
21	0	3	0	0	3	1	2	1	2	0	0	1	2	0	3	0	0	1	0	0	0	1
22	0	3	0	0	3	1	2	3	0	0	3	0	0	0	3	0	0	1	0	0	0	1
23	0	3	0	0	3	1	2	3	0	0	1	1	1	0	3	0	0	1	0	0	0	1
24	0	3	0	0	3	2	1	0	3	0	3	0	0	0	3	0	0	1	0	0	0	1
25	0	3	0	0	3	2	1	0	3	0	1	1	1	0	3	0	0	1	0	0	0	1
26	0	3	0	0	3	2	1	2	1	0	2	1	0	0	3	0	0	1	0	0	0	1
27	0	3	0	0	3	2	1	2	1	0	0	2	1	0	3	0	0	1	0	0	0	1
28	0	3	0	3	0	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
29	0	3	0	2	1	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
30	0	3	0	1	2	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
31	0	3	0	0	3	3	0	1	2	0	1	2	0	0	3	0	0	1	0	0	0	1

Solutions for hypercharge $U(1)_Y = \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c - \frac{1}{2}U(1)_d$ - Madrid embedding

Concrete 5-stack model (benchmark)

(w/ three mass scales in top, bottom in charged lepton sector)

Sector	Matter Fields	Transformation	Multiplicity	Hypercharge
ab	q_L	(a, \overline{b})	1	$\frac{1}{6}$
ab'	q_L	(a,b)	2	$\frac{1}{6}$
ac'	u_R	$(\overline{a},\overline{c})$	2	$-\frac{2}{3}$
ad'	u_R	$(\overline{a},\overline{d})$	1	$-\frac{2}{3}$
aa'	d_R	\Box_a	3	$\frac{1}{3}$
bc'	H_u	(b,c)	1	$\frac{1}{2}$
bd'	L	$(\overline{b},\overline{d})$	3	$-\frac{1}{2}$
be'	H_d	$(\overline{b},\overline{e})$	1	$\frac{1}{2}$
ce'	E_R	(c,e)	2	1
ce	N_R	(\overline{c},e)	1	0
dd'	E_R	\square_d	1	1
de	N_R	(\overline{d},e)	2	0

Allows for full (inter- & intra-) family mass hierarchy via ``factorization of Yukawa matrices' due to vector-pairs of zero fermion modes-stringy (technical, no time)

New: Stringy constraints & matter beyond the MSSM

[M.C., J. Halverson, P. Langacker,1108... tonight on hep-ph] → c.f., also J. Halverson's talk in the morning parallel session

I.Classify all possible MSSM quivers (three, four stacks) study the additional matter needed to be compatible with the global constraints - stringy inputs on exotic matter

3-stack analysis: global conditions (T_{a,b,c}=0) constraining, e.g., MSSM w/

$$U(1)_Y = \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c$$
 $T_a = 0$ $T_b = \pm 2n$ $T_c = 0 \mod 3$ with $n \in \{0, ..., 7\}$,

w/ preferred additions: quasi-chiral Higgs pairs, MSSM singlets hyperchargeless SU(2) triplets,& various quark anti-quark pairs, all w/ integer el. ch.; one (massless) Z' quiver

4-stack analysis: richer structure

sizable number of quivers w/ Z', including leptophobic (tuned); additional structures: possible $SH_{\underline{u}}H_{d,;}$ v-masses; exotics w/ fractional el. ch. ...

II. Work in progress on axigluons w/ (stringy) quiver embedding

• 105 3-node quivers (≤ 5 additions)

Multiplicity			Matter Additions	;	
4	\Box_b , $(1,3)_0$	\Box_b , $(1,3)_0$	$_{]b}$, $(1,1)_{0}$	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	$(\overline{a},\overline{b}), (\overline{3},2)_{-\frac{1}{6}}$
4	$_{\Box b}$, $(1,3)_{0}$	$_{ m Bb}$, $(1,1)_0$			
4	$_{\overline{\square}_b}$, $(1,3)_0$	$ \exists b, (1,1)_0 $			
4	m_b , $(1,3)_0$	$\exists_b, (1,1)_0$	$\exists_b, (1,1)_0$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$
4	\equiv_b , $(1,3)_0$	$ \exists_b, (1,1)_0 $	$ \exists_b, (1,1)_0 $	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$
4	$\Box_b, (1,3)_0$	$\bar{\mathbf{h}}_{\mathbf{b}}$, $(1,1)_0$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	$(\overline{a},\overline{b}), (\overline{3},2)_{-\frac{1}{6}}$
4	$\bar{\exists}_b$, $(1,1)_0$	$\bar{\exists}_b$, $(1,1)_0$			
4	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$		
4	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	
4	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	$\exists a, \ (\overline{3},1)_{\frac{1}{3}}$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(\overline{a},\overline{c}), (\overline{3},1)_{-\frac{2}{3}}$	\Box_{c} , $(1,1)_{1}$
4	$_{\Box b}$, $(1,3)_{0}$	$ \exists_{b}, (1,1)_{0} $	$\exists_b, (1,1)_0$	$_{\text{H}_{b}}$, $(1,1)_{0}$	$ \exists_b, (1,1)_0 $
4	$_{\equiv_b}$, $(1,3)_0$	$ \exists b, (1,1)_0 $	$_{b}$, $(1,1)_{0}$	$_{\mathbb{B}_{b}}$, $(1,1)_{0}$	$ \exists b, (1,1)_0 $
4	\equiv_b , $(1,3)_0$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$\bar{\mathbf{h}}_b$, $(1,1)_0$		
4	\equiv_b , $(1,3)_0$	$\bar{\exists}_b$, $(1,1)_0$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	
4	$\equiv_b, (1,3)_0$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$
4	$_{ ext{b}}$, $(1,1)_0$				
4	$ _{b}, (1,1)_{0} $	$\exists_b, (1,1)_0$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	
4	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$\bar{\mathbf{h}}_b$, $(1,1)_0$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	
4	$\equiv_b, (1,3)_0$	$_{\overline{\Box}_{b}},\ (1,3)_{0}$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$
4	$ \exists_b, (1,1)_0 $	∄ _b , (1, 1) ₀	$ \exists_b, (1,1)_0 $	$lacksquare{1}{1}_{b}$, $(1,1)_{0}$	

Multiplicity	Matter Additions											
4	\Box_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$\bar{\exists}_{b}$, $(1,1)_{0}$	$\bar{\exists}_b$, $(1,1)_0$							
4	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$\exists_b, (1,1)_0$									
1	\exists_a , $(\overline{3},1)_{\frac{1}{3}}$	$\Box_b, (1,3)_0$	$_{B_{b}}$, $(1,1)_{0}$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$								
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$\Box_b, (1,3)_0$	$\exists_b, (1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$								
1	$\exists a, \ (\overline{3},1)_{\frac{1}{3}}$	\equiv_b , $(1,3)_0$	$\exists_b, (1,1)_0$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$								
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$_{\Box_{b}}$, $(1,3)_{0}$	$\exists_b, (1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$								
1	$\exists a, \ (\overline{3},1)_{\frac{1}{3}}$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$\bar{\mathbf{b}}_b$, $(1,1)_0$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$								
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$\bar{\mathbf{h}}_b$, $(1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$								
1	$\exists a, (\overline{3}, 1)_{\frac{1}{3}}$	$\bar{\mathbf{b}}_{b}$, $(1,1)_{0}$	$(b, \overline{c}), (1,2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$							
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$(b, \overline{c}), (1,2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	$(\overline{a},c), (\overline{3},1)_{\frac{1}{3}}$							
1	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$	$(\overline{a},\overline{c}), (\overline{3},1)_{-\frac{2}{3}}$	$_{\Box c}$, $(1,1)_{1}$							
1	$\exists a, \ (\overline{3},1)_{\frac{1}{3}}$	\equiv_b , $(1,3)_0$	$\bar{\mathbf{h}}_{b}$, $(1,1)_{0}$	$\bar{\exists}_{b}$, $(1,1)_{0}$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$							
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$_{\Box_{b}}$, $(1,3)_{0}$	$\bar{\mathbf{h}}_b$, $(1,1)_0$	$\bar{\exists}_b$, $(1,1)_0$	$(\overline{a},c), (\overline{3},1)_{\frac{1}{3}}$							
1	$\exists a, (\overline{3}, 1)_{\frac{1}{3}}$	\exists_a , $(\overline{3},1)_{\frac{1}{3}}$	$\exists_b, (1,1)_0$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$							
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$\bar{\mathbf{B}}_a$, $(3,1)_{-rac{1}{3}}$	\exists_b , $(1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$							
1	$\exists a, (\overline{3}, 1)_{\frac{1}{3}}$	$ \exists_b, (1,1)_0 $	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$									
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$_{ m Bb}$, $(1,1)_{ m 0}$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$									
1	$\exists a, (\overline{3}, 1)_{\frac{1}{3}}$	$\equiv_b, (1,3)_0$	$_{\Box_b}$, $(1,3)_0$	_В ь, (1, 1) ₀	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$							
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	_{∃b} , (1, 1) ₀	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$							

Developments in F-Theory

Vafa'96..

F-theory — both geometric features of particle physics w/ intersecting branes & exceptional gauge symmetries common in the heterotic string & string coupling g s -finite

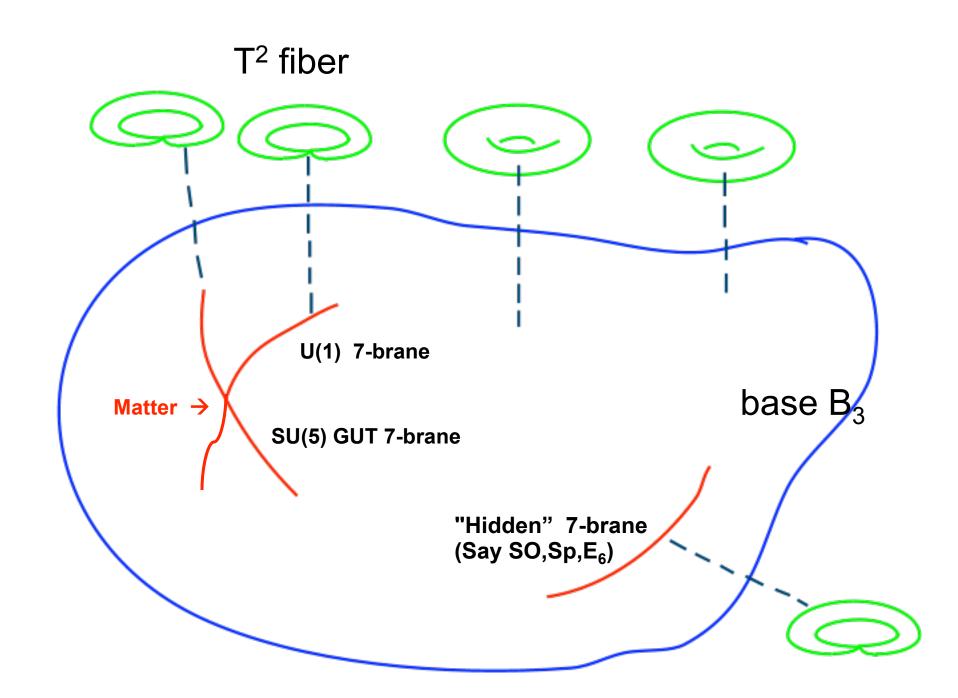
Geometry of F-theory: Elliptically Fibered Calabi-Yau four-fold (roughly viewed as a ``lift" of Type IIB w/ 7-branes & g_s encoded in T² fibration over the base B₃) –Weirstrass parameterization

Where fiber degenerates (say for T^2 pA+qB cycle) a co-dim 1 singularity signified a location (p,q) 7-branes in the base B_3 .

Matter: Intersecting 7-branes at co-dim 2 singularities G-flux needed (for chirality)

(Semi-) local &limited global SU(5) GUT studies: appearance of chiral matter (and Yukawa couplings) by studying co-dim two (and three) singularities on the GUT 7-brane. [Donagi, Wijnholt; Beasley, Heckman, Vafa; Marsano, Schafer-Nameki, Saulina; Blumehagen, Grimm, Jurke, Weigand;... M.C., Garcia-Etxebarria, Halverson 1003.5337...]

 \rightarrow c.f. J. Marsano's; Luedeling's talk in the morning parallel session



F-Theory and Instantons → Why Instantons?

Still there (though may not be needed for 10 10 5): other charged matter couplings w/hierarchcial couplings, moduli stabilization, supersymmetry breaking

```
[M.C., I. Garcia-Etxebarria, J. Halverson 1107.2388;
 M.C., I. Garcia-Etxebarria, R. Richter 0911.0012]
```

Goal: i) identify zero modes

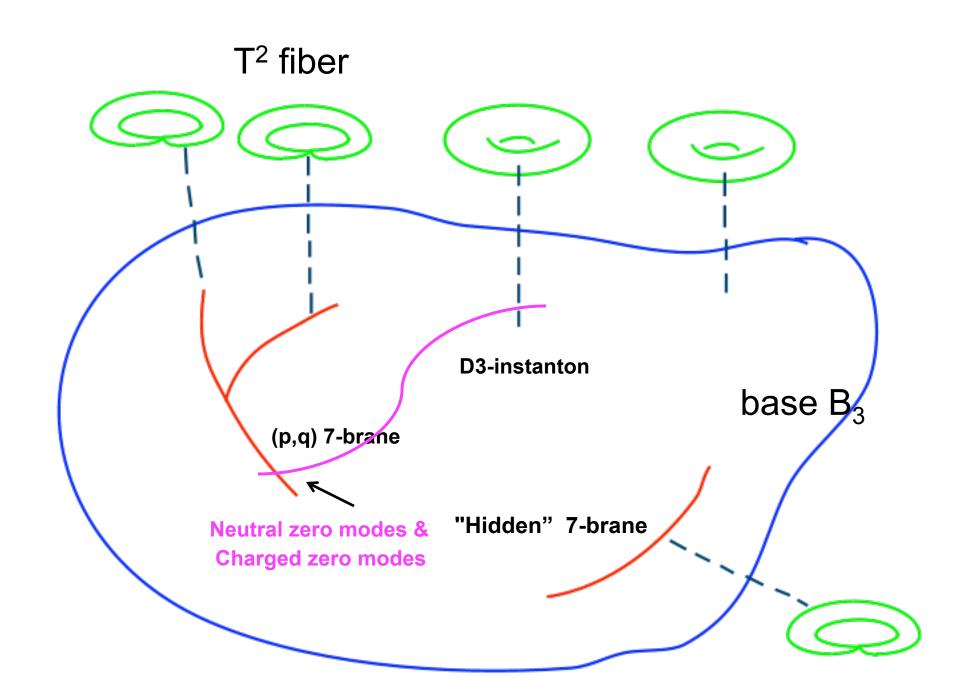
ii) quantitative superpotential (including exceptional singularity points)

finite g_s → techniques ``indirect"

- Three approaches: a) anomaly inflow quantify neutral zero modes
 - b) string junctions neutral & charged zero modes
 - c) F-/Heterotic duality quantitative superpotential

Related Recent works (more focus on G-fluxes and U(1)'s):

[Marsano, Saulina, Schafer-Nameki 1107.1718; Bianchi, Collinucci, Martucci 1107.3732; Grimm, Kerstan, Palti, Weigand 1107.3842]



Gauge Dynamics and Spectrum via String Junctions 7-branes in F-theory:

Complexified string coupling:

going around a D7-brane,
$$\tau \mapsto \tau + 1$$
.

$$\tau = C_0 + \frac{i}{g_s}$$

there are more general 7-branes, for which $\tau \mapsto \frac{a\tau + b}{c\tau + d}$. where

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}).$$

if the cycle pA + qB pinches off in the auxiliary torus, corresponding brane is a (p,q) 7-brane.

$$M = \begin{pmatrix} 1 + pq & -p^2 \\ q^2 & 1 - pq \end{pmatrix} \in SL(2, \mathbb{Z}).$$

Common building blocks:

$$A = (1,0)$$
 $B = (1,-1)$ $C = (1,1)$

A-branes are D7-branes.

in F-theory, O7's split into B and C, seperation set by g_s .

$$\longrightarrow$$
 so $\mathcal{M}_{O7} = M_C M_B$.

from IIb, know 4 D7's on top of O7 has SO(8), so

$$\mathcal{M}_{SO(8)} = M_C M_B M_A^4 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

can also get exceptional branes, e.g.

$$\mathcal{M}_{E6} = M_A M_C^2 M_B M_A^4 = M_A M_C \mathcal{M}_{SO(8)} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}.$$

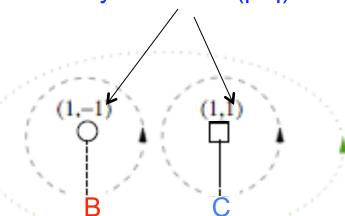
Neutral modes for F-theory O(1) instantons & SL(2,Z) mondromy

[M.C., I. Garcia-Etxebbaria, R. Richter, 0911.0012]

Absence of $\bar{\tau}$ in F-theory:

D3 O(1) instanton w/ O7- plane as complex co-dim 1 defects on the world-volume of D3 instanton:

O7 as two mutually non-local (p.q) 7-branes B & C [Sen'96]



w/ SL(2,Z) monodromy:

$$M_{(p,q)} = \begin{pmatrix} 1-pq & p^2 \\ -q^2 & 1+pq \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Zero modes (``gauginos" of E3) transform as [Kapustin, Witten'06]

$$heta o e^{i arphi (M_{(p,q)})} heta$$
 After the action around both defects $ar{ au} o e^{-i arphi (M_{(p,q)})} ar{ au}$

$$\theta \rightarrow \theta$$

$$\bar{\tau} \rightarrow -\bar{\tau}$$
 Projected out!

Neutral modes for F-theory O(1) instantons

Further quantified results for θ modes Via anomaly inflow:

Anomaly of the bulk CS action of intersecting D3-inst. and O7 \leftarrow \rightarrow Cancelled by zero modes at the intersection

(precisely fixed by θ modes, employing [Harvey, Royston'08])

Prototype: F-theory on elliptically fibered K3 -- T² fibered over **P1**, w/Weirstrass:

$$y^2 = x^3 + fx + g$$
 discriminant: $\Delta = 4f^3 + 27g^2$

$$f \in H^0(\mathbb{P}^1, \mathcal{O}(4\overline{K}_{\mathbb{P}^1}))$$
 and $g \in H^0(\mathbb{P}^1, \mathcal{O}(6\overline{K}_{\mathbb{P}^1}))$

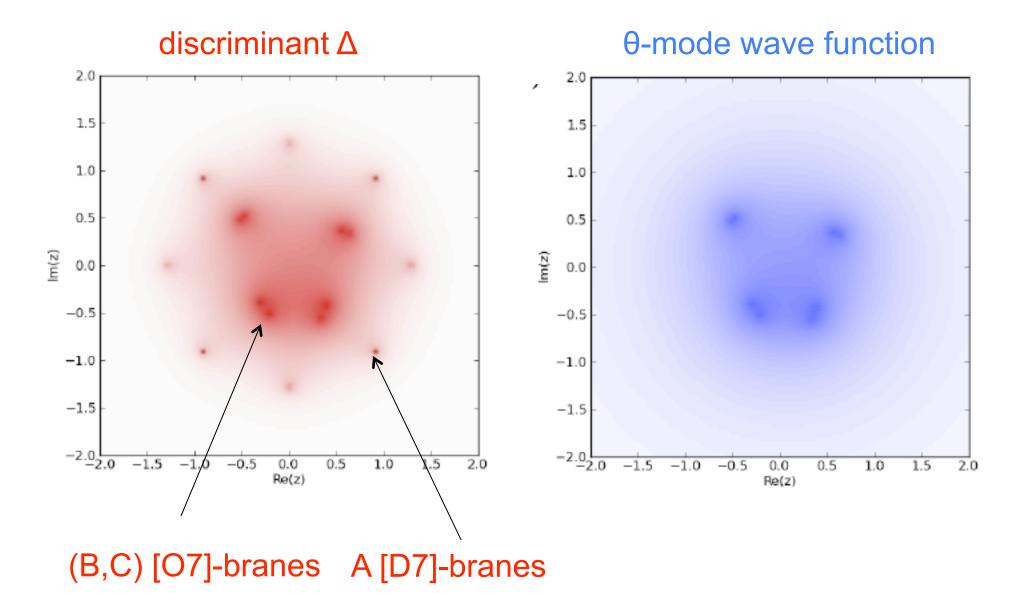
w/ deformation
$$\epsilon$$
: $f = -3h(z)^2 + \epsilon \eta(z)$
$$h(z) = \prod_{s'}^4 (z - h_n)$$

$$g = -2h(z)^3 + \epsilon h(z)\eta(z)$$

$$\eta(z) = \prod_{r=1}^4 (z - \eta_r)$$

Geometrically: motion of 16 A [D7] & 4(B, C) [O7]-branes in P1

Numerical Results:



Charged Zero Modes in E3-background:

D3 –instanton (complex dim 2) world-volume & w/ (p,q) 7- branes co-dim 1 defects moving as we move in moduli space.

Example w/(p,q) branes where the string coupling remains constant

Prototype: F-theory on elliptically fibered K3 w/ Weirstrass fibration:

$$\begin{split} y^2 &= x^3 + fx + g & j(\tau) = \frac{4(24f)^3}{4f^3 + 27g^2} \\ f &\in H^0(\mathbb{P}^1, \mathcal{O}(4\overline{K}_{\mathbb{P}^1})) \text{ and } g \in H^0(\mathbb{P}^1, \mathcal{O}(6\overline{K}_{\mathbb{P}^1})) \\ f(z) &= \alpha(\phi(z))^2 \text{ and } g(z) = \phi(z)^3 \\ \text{with } \phi(z) &= \prod_{i=1}^4 (z-z_i) \qquad j(\tau) = \frac{55296\alpha^3}{4\alpha^3 + 27} \quad \text{Constant } \tau = e^{\frac{\pi i}{3}} \; ! \end{split}$$

Motion in (complex structure) moduli space

recall
$$E6 = A^5BC^2$$
 and $SO(8) = A^4BC$
$$f = 0 \qquad \qquad g = \prod_{n \in \{0,1,2\}} (z - e^{\frac{2\pi ni}{3}})^3 (z - \beta e^{\frac{2\pi ni}{3}})$$

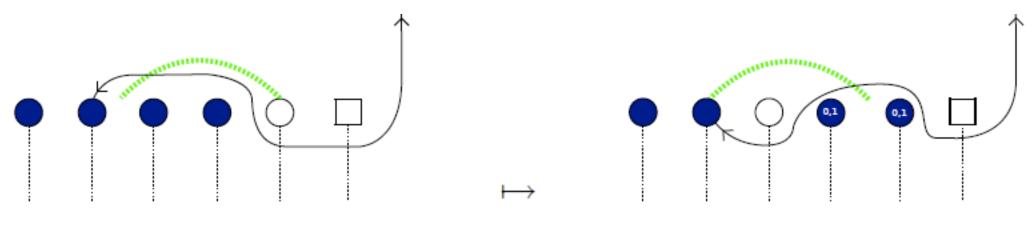
comments

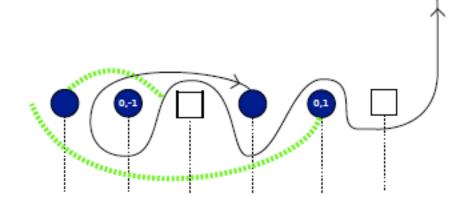
- ullet at eta=0, can go to weak coupling and then split to 16 D7 + 4 O7
- summary: smoothly go $E6^3 \rightarrow SO(8)^4 \rightarrow 16 D7 + 407$ at $g_s \ll 1$, constant coupling the whole way.

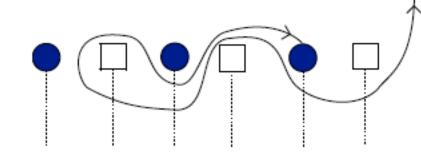
$ACACAC \leftrightarrow A^4BC$

complication: fourth SO(8) appears as ACACAC, not A^4BC .

Need to "untangle" to understand junctions







In the D3-instanton backround (p,q) branes move and the spectrum of zero charged modes changes:

Starting with 3 27's at $E6^3$ point.

Pulling AC off each E6, the strings in **27** which don't get a mass leave behind precisely an **8**_v of SO(8).

Each AC has a string connected to the A-brane. Together with 5 massive states which become massless when the 3 AC's come together, they form an $\mathbf{8}_v$ of SO(8).

Pushing to weak coupling and splitting SO(8) to 16D7 + 4O7, we get standard charged modes, i.e. D7-D3 strings.

Neutral and charged zero modes understood, including at exceptional symmetry points in moduli space!

How about quantitative superpotential?

Insights from Heterotic/F-theory duality

no time

move in vector bundle moduli space, can get jumps in zero modes which cause superpotential to vanish.

on F side, vanishing of instanton superpotential corresponds to brane movement / enhancement

Foresee further progress:

- a) DEVELOPMENT of TECHNIQUES! → generalize constructions to general Calabi Yau spaces (advanced algebraic geometry techniques); Fluxes in F-theory
- b) Quantitatively improve realistic model constructions, including further progress on non-perturbative effects

Conclusions/Outlook

- "Climpses" of particle physics from String Theory
 Focus on D-branes → Type II and F-theory
- a) Progress: development of techniques for constructions Sizable number of semi-realistic models
- b) "The devil is in the details!"-typically not fully realistic typically exotic matter → but viewed as a string prediction

MANY SOLUTIONS! Which one is our world?

Hopefully, with this input and theoretical developments fully realistic particle physics from string theory w/ efforts presented here playing a role